Reflected Backward Stochastic Differential Equations Driven by Lévy Process
نویسندگان
چکیده
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with Lévy process. We obtain the existence and uniqueness of solutions to these equations by means of the penalization method. As its application, we give a probabilistic interpretation for the solutions of a class of partial differential-integral inclusions.
منابع مشابه
Reflected generalized backward doubly SDEs driven by Lévy processes and Applications
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملBackward Stochastic Differential Equations Associated with Lévy Processes and Partial Integro-differential Equations
In this paper, we deal with a class of backward stochastic differential equations driven by Teugels martingales associated with a Lévy process (BSDELs). The comparison theorem is obtained. It is also shown that the solution of BSDE provides a viscosity solution of the associated system with partial integro-differential equations.
متن کاملReflected Generalized Backward Doubly
In this paper, a class of reflected generalized backward doubly stochastic differential equations (reflected GBDSDEs in short) driven by Teugels martingales associated with Lévy process and the integral with respect to an adapted continuous increasing process is investigated. We obtain the existence and uniqueness of solutions to these equations. A probabilistic interpretation for solutions to ...
متن کاملReflected Backward Stochastic Differential Equations Driven by Countable Brownian Motions
In this note, we study one-dimensional reflected backward stochastic differential equations (RBSDEs) driven by Countable Brownian Motions with one continuous barrier and continuous generators. Via a comparison theorem, we provide the existence of minimal and maximal solutions to this kind of equations.
متن کاملGeneralized Bsde Driven by a Lévy Process
A linear version of backward stochastic differential equations (BSDEs) was first studied by Bismut [4] as the adjoint processes in the maximum principal of stochastic control. Pardoux and Peng in [20] introduced the notion of nonlinear BSDE. Since then, the interest in BSDEs has increased. Indeed, BSDEs provide connection with mathematical finance [10], stochastic control [11], and stochastic g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008